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The problem of the deformation of a homogeneous, elastic, anisotropic body with a rectilinear edge cut having a small kink r, 
of fairly arbitrary shape is analysed. The asymptotic solution of this problem in the case of small values of the dimensionless 
parameter 7, characterizing the kink size is constructed using a modified method of matched asymptotic expansions. The amount 
of elastic energy released is expressed in terms of a set of stress intensity factors (SIFs) at the tip of the unperturbed crack, the 
integral characteristics of the kink r, (the components of the enlarged energy release matrix) and the integral characteristics of 
the initial solid (the SIFs of the weighting functions). The results are compared with existing results in the case of an isotropic 
solid. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Consider a homogeneous, anisotropic, elastic solid Q. which has a rectilinear edge cut Eo. We will assume 
that the solid is loaded on the external boundary I under conditions of plane deformation. The 
displacement vector u” = (~7, us) satisfies the problem 

duo = 0, x =(x,, X2) En, (1.1) 

&)(“a; x) = PO(X), x E I-; cP(“O; x) = 0, x E E; uz, (1.2) 

Here L(V,) is the (anisotropic) Lame operator, cr@) is the stress vector in the plane with unit normal 
n, which is outward with respect to Qo, and $ and z:O are the upper and lower edges of the cut Eo. 
The load p” is assumed to be self-balanced, that is 

j&x@, = 0, k = 1.2, I[x,p20(x)--x2pp(x)]dsx = 0 (1.3) 
r I- 

Suppose 1 is the shortest distance from the tip 0 of the crack E. to the boundary r. We denote a 
small positive parameter by r and determine the crack increment r,. We introduce the “stretched” 
coordinates 

In the plane of the variables (&, &), we produce a piecewise-smooth simple arc r, which is covered by 
a circle of @ameter 1. The arc T, is obtained by compressing r 7-l times, that is 

rl={(x,,x*): z-‘(x,,x+Yl 

Finally, on removing the small set Tr from Qo, we obtain the domain Q, with an increased and, generally 
speaking, kinked out E, (Fig. 1). 

The vector of the displacements of the points of the solid uT satisfies the relations 

L(V,)J(x) = 0, x E fir (14 

cP)(UT. x) = PO(X) x E r 

o’n’(“T;x)=o, x&z; 
(1.5) 
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Fig. 1 

By Clapeyron’s theorem, the elastic potential energy of deformation of a solid Q, is given by the 
following formula (the dot denotes a scalar product) 

(1.6) 

We will investigate the, behaviour of the solution of problem (1.4) (1.5) and the functional (1.6) for 
small values of the parameter 2. 

A numerical solution of the problem of the fracture of an initially rectilinear crack in an anisotropic, 
elastic plane has already been obtained ([l, 21, etc.). Assuming a slight inclination of the kink, an 
approximate solution was found in [5] by the small-parameter method [3, 41. In the isotropic case, 
asymptotic formulae for the str\ess intensity factors (SIFs) were also derived in [6, 71 and elsewhere. 
The asymptotic form of the energy release has been constructed [8,9, etc.]. The problem of the kinking 
of a crack in an elastic solid with finite dimensions was considered in [lo, 111. The most complete results 
were obtained in [ll, 121. 

In this paper, the shape of the kink Tr is not constrained by any assumptions. The main result of the 
paper is the complete asymptotic expansion of the energy (1.6) with respect to the parameter 2. 

2. THE BASIS OF THE POWER SOLUTIONS IN THE PROBLEM OF 
A SEMI-INFINITE CRACK 

An asymptotic representation of the vector u’(x) when r = ] x ( -+ 0 is formed from the power solutions 
r”@(q, In r) in which A is a complex number, cp E (-71, rc) is the polar angle and cf, is a polynomial of 
the variable In r with smooth coefficients with respect to cp. It has been established in [13] (and, besides, 
these facts have long been known in special cases of anisotropy) that the exponent is an integer or half- 
integer and that In r only appears when A = 0. 

In accordance with the mechanical interpretation, it is customary to subdivide the above-mentioned 
solutions into four groups. The solutions 

X’++‘(r, cp) = Im+%@+‘((P), j = 1,2; m = 0, 1, . . . (2.1) 

belong to the first group. These solutions possess a finite elastic energy in any circle and generate 
singularities in the stresses or their derivatives at the crack tip. The vectors (2.1) satisfy the following 
normalization conditions on the kink of the crack 

~i2(XjJm+‘; _q, 0) = (2~)~K r44t& i, X] > 0, i = I,2 (2.2) 

The second group contains homogeneous polynomials of the variables x1 and x2 

Xi.*m(r, cp) = ym@,*m (cp), j = 1,2; m = 0, 1, . . . (2.3) 

The vectors X1” = ei, X2,’ = e2 and X2,2 (r, cp) = x1e2 - x2e1 correspond to translational 
motions and rotation. The other polynomial solutions (2.3) can be subject to the same normalization 
conditions 
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~11(Xj~Zm;x1,0)=rm~16,,j, x1 >O, m=l,2 ,... 

(2.4) 
i&o,, (xj**m; xi, 0) = -(m - l)rm-262,j. x, > 0, m = 2,3, . . . 

Henceforth, the simplified notation Jj = d/&x is used for derivatives and $ is the Kronecker delta. 
The remaining solutions have singularities and, in the case of these solutions, the energy integral 

diverges at the cut tip. For instance, the vectors 

Yj+2m+t(r, cp) = ,-m-HyrjJm+t(cp), j = I, 2; m = 0, 1, . . . (2.5) 

Yj*O(r, (9) = QO((p) In r + Yv’so(cp), j = I,2 

(2.6) 
Y~~2m(r,(p)=r-m~~~2m((9), j=l,2; m=l,2,... 

occur in the third and fourth groups. 
Note that the solutions Y’,’ , Y*,’ and Y*,*, which are paired with X1,‘, X2,’ and X2,2, generate forces 

and moments that are concentrated at the crack tip. We normalize the non-energy solution (2.5) and 
(2.6) with the conditions [14] 

q(x 9 
j,k yi.n. 

9 Y)=6i,j6,,, 

cl(~~"~Y)=~r a(")(u;x)~ V(X)-u@qv;X)~U(X)]dsx 
Y 

V-7) 

Here y is an arbitrary arc, encompassing the tip, that is, which has ends on the opposite edges of the 
semi-infinite crack. By virtue of the Betti identity, the left-hand side of equality (2.7) is independent 
of y. 

Remark 1. In the case of an isotropic material, the angular parts ‘-I’... and q... have been indicated [14] when 
normalizations (2.2) and (2.7) are satisfied, but with a change in normalization (2.4). In the case of general anisotropy, 
it has been verified [15] that the power solutions may be subject to requirements (2.2) and (2.7). 

We will now show that the polynomial solutions (2.3) allow of normalization (2.4). If this were not so, a polynomial 
solution X(x) = r”@(q) would be found for a certain m, for which 

o,,(x;x,,o)=o, a*o,,(x;x,,o)=o, x, >o (2.8) 

In the case of the polynomials, equalities (2.8) extend to all values ofx,. Similarly, the boundary conditions on the 
sides of a semi-infinite cut 

cr,*tx;x,,o)=o, o**(X;x,,O)=O, x, co 

also extend along the whole abscissa axis. 

(2.9) 

Relations (2.8) and (2.9) can be differentiated with respect tax,. Hence, from the equilibrium equations, which 
are satisfied for polynomials over the whole plane 

a*o*, (X; x) = -a,o,, (X; x) = 0, a*o,,(x; x) = 4,o**(X; x) (2.10) 

we initially derive the formulae &az(X; x,, 0) = 0 (i = 1, 2) and, then, differentiating Eqs (2.10) with respect 
to x2, also the formulae a:o,i(X; x,, 0) = 0, @s~~(X, x,, 0) = 0. So, for a certain n 3 2, 

o,,(x;x)=x;q,(x), o,*(X;x)=x* “+‘q*(x), 0**(x;x)=x;+*q*(x) (2.11) 

The degree of the polynomial Pi. is equal to m - II - i -j + 2. We assume that the number n is taken to be as 
large as possible in equalities (2.11j, and this means that the coefficient c in the polynomial P,, is non-zero when 
XT-“. Actually, if c = 0, then 

@a,,(X;x,,O)=O, &~,~(X;x,,0)=0, ~$+‘o~~(X;X,,O)=O, k=O ,..., n 

and, using Eqs (2.10), we observe that ~~+,olz(X; xl, 0) = a;+’ o&X; x,), that is, we increase n by unity. We now 
put C = c(m - n)! and obtain 
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(JI 1 @I m-“X;X)=CX$, ~,~(a;l-“x;x,=o,,ca;“-“x;x,=o 

The deformations Eik(Jy-“X; x) satisfy the compatibility equation 

0 a2k : a=e22 a=&,2 n-2 
ax,' a.$ 2ax,ax2 

=Cu,,n(n-1)x2 

only in the case when C = c = 0 since n 3 2 and ali is a non-zero diagonal element of the pliability matrix. The 
necessary contradiction has been found. 

The asymptotic form of the solution of problem (1.1) (1.2) in the neighbourhood of the crack tip 
can be written as 

uO(x) = c C;,nXj*“(r, (9)+O(P+‘)‘2), r + 0 
(j.4 

(2.12) 

Any natural N can be taken in relation (2.12). We shall subsequently fix this, and summation must be 
carried out overj = 1,2,n = 1, . . ., N. On account of the fact that the coefficients ~(l,~, co2 o and ci 2 are 
arbitrary in the case of stiff displacements, they can be taken equal to zero and the summation contracted 
by eliminating the corresponding pairs of indices. The coefficients c& and c& are the SIFs G and @. 

Remark 2. Normalization (2.2) conforms with the definition of the SIF which is used in strong criteria, and it 
therefore follows that the basis of the power solutions which has been introduced should be referred to as a “strong” 
basis. The concept of the opening of a crack arises in the deformation criteria and the “deformation” basis is 
therefore associated with the normalization conditions 

/ 
[422m+l] = _,“‘Kg,, j, [X!,=m+‘] = _y+M6=, j 

Xj*2m(r,0)=rm81,j, Xi2m(r,0)=rm6j,2 r (2.14) 

([Xl = X(r, +x) - X(r, -IT) is the jump in the function X on the crack sides). 
Note that relation (2.14) was used previously in [14] instead of (2.4). 
The possibility of complying with normalizations (2.13) and (2.14) is proved indirectly. For example, denying 

the possibility that requirements (2.13) can be satisfied, we find a power solution X(x) = rm+“Wm(cp) for which 
[Xi] = 0 (i = 1, 2). Since, [ozi(X)] = 0 in view of the boundary conditions on the cut sides, the vector X satisfies 
the homogeneous equilibrium equations everywhere in the plane with the exception of the cut tip. Consequently, 
the exponent A accompanying it must be an integer and not a half-integer m + l/z. 

3. DIFFERENTIATION ALONG A CRACK 

Since L(V,) is a differential operator with constant coefficients (the elastic material is homogeneous), 
every power solution U(x) = r*@(q) which differs from a constant remains a power solution after 
carrying out the differentiation d/ax,, but has an exponent V - 1. It is easily shown that the vectors (2.1) 
and (2.3) are related by the equalities 

a,xi*n+2 (r, cp) = fXj*‘(r, cp). n = 0, 1,2, . . . (3.1) 

Note that the factor m - 1 in the second relation of (2.4) is, in fact, set up precisely in order to satisfy 

(3$te formula 

da,u. vi Y) = -du, ax Y) 

WI. 

(3.2) 

for the power vectors U and V has been verified in 
When account is taken of (2.7), the relation 
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4Y”“(r, cP> = -5Yj*n+2(r, cp), n = 0,1,2,... (3.3) 

follows from equalities (3.1) and (3.2). 
Hence, in order to construct the basis vectors (2.1) and (2.5), it is sufficient to calculate the angular 

parts @‘, ’ and Vj* ’ and to comply with the normalization conditions (2.2) and (2.7). The remaining 
vectors of (2.1) and (2.5) for m = 1,2, . . . are determined in accordance with equalities (3.1) and (3.3). 
Moreover, the expansion 

~,Xj”(r,(p)=aj,Y”‘(r,~)+olj2Y2”(r,(P), jzl.2 (3.4) 

holds. The coefficients ojk are determined in terms of the constants of elasticity using the formula 

ajk = -q(Xk*’ , a,xjq, j, k = 1,2 (3.5) 

Here, the matrix CY = ]] ajk I] is found to be symmetric (see (3.2)) and positive-definite (see [15]). The 
quantities ajk depend on the crack orientation with respect to the axes of anisotropy. We shall assume 
that a0 = (alI + aZ2)/2. 

The relation between the form of q from conditions (2.7) and the invariant Cherepanov-Rice integral 

J(uO; y) = -+a, +a; Y) (3.6) 

J(u; y) = ] [W(u; x)cos(n, x,) -&)(u; x)~~,u(x)]ds, 
Y 

has been established in [16]. 
Here W(u; x) is the elastic energy density corresponding to the displacement field u. Hence, by 

relations (2.7), (3.4)-(3.6) and (2.12), we have 

(3.7) 

4. WEIGHTING FUNCTIONS 

We will call the pairs of indices (i, n), which differ from (LO), (2,0) and (2,2), permissible pairs. Following 
the well-known approach in [17,18], we introduce weighting functions for the permissible pairs of indices, 
that is, the non-energy solutions of the homogeneous problem (l.l), (1.2) with singularities at the cut 
tip, 

2;j’“(x)=YjV’(r,(p)+0(1), r+O (4.1) 

The normalization conditions (2.7) ensure [18, 161 integral representations for the coefficients in 
expansion (2.12) 

CT,” = j PO(X). pyx)ds, 
ro 

The asymptotic formula (4.1) can be refined to give 

&j’“(X) = Yj*"(r, cp)+ C m~.,"XivP(r, (p)+ O(P+‘)‘*), r-b 0 
0.p) 

(4.2) 

(4.3) 

Here, as in Section 2, we assume that rn{;!, = rni,f, = tp2, 2 - jgn - 0 that is, the summation is carried out , 
over the permitted pairs (i, p). From the coefficients mf$, wesetupthe@V-l)x(2iV-l)SIFmatrix 
of the weighting functions m = IIrn$$II, coordinating the numbering of the rows and columns in the 
following manner 
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ml:; m::l, 
I.1 

m1.2 rn:*l rn$\ . rnffy m::!w 
2.1 

mu ml-: 
2.1 

m1.2 
il 

ml,> rni;i 
il 

. . ml.., 
2.1 

m2.N 
1.2 

ml.1 m::: 
1.2 

m1.2 
1.2 

ml.3 rn.$: 1.2 . . . FN d% 
1.3 

ml,, m::: 
1.3 

m1.2 
1.3 

m1.3 rnk.33 
1.3 

. . . TN mcv 
2.3 

ml.1 m2’:: 
2.3 

m1,2 
2.3 

m1.3 
2.3 

m2.3 ‘.. 
2.3 

m1.N m::; 

. . . . . . . . . . . ,.~ . . . . . . .., 

LN 
ml.1 mz ml*; ml,f rn:‘y 

1.N 
. . m1.N m:: NN 

2.N 
ml.1 m;:,N 

2-N 2-N 2-N 
ml,; ml,; m2,‘3 

2.N 
. . rn1.N 4: 

(4.4) 

The symmetry and the positive definiteness of the matrix m (see [14, $1.51) is established by applying 
Green’s formula to the functions 6”” and 6”” in the domain S& from which a circle of radius E has been 
removed, together with taking the limit as E -+ 0. The coefficients rn{;: are defined solely by the geometry 
of the Sza domain and depend on the constants of elasticity, rather than on the applied load p”. If L 

has the dimension of length, the dimension of the quantity a,rnj;; is equal to L-@+“)i2. 

5. THE ENERGY RELEASE MATRIX 

We will now consider the plane of the stretched coordinates and, in the domain G = R2 \ (&UT), where 
A0 is the ray (5: c1 < 0, c2 = O}, we consider the elastic problem 

L(V~ jw(e) = 0, 5 E C; a(~)(w; 5) = 0, g E ac (5.1) 

Here aG is the boundary of the domain G, consisting of the cut sides AzuT+ and &UT-. 
As earlier in [14], we denote the special solutions of the homogeneous problem (5.1) which increase 

at infinity as Xi, “(p, cp) = p”‘2@j, “(cp), w h ere p = E-~Y is the “stretched” polar radius, by qj, n. The 
expansion 

q’*“(&)= X’*“(p, cp)+ c M:~Y’.P(p,cp)+O(p-‘N+‘)‘2) 
(Lp) 

(5.2) 

holds as p -+ 00. 
We now introduce the (2N- 1) x (Uv- 1) matrixM = 1 IM{;$II, ordering the coefficients of expansion 

(5.2) in it in the same way as in (4.4). It has been established [14], that the matrixM is symmetric and 
non-negative-definite (positive-definite, if, for example, Y is not an interval that extends the ray Ao). 
The coefficients il4ta depend on the constants of elasticity and are determined by the shape and size 
of the kink T. The dimensionality of the quantity a;‘MiG is equal to L(“+P)‘2. 

Remark 3. If T is an interval, that extends the cut i\o, then, in the case of even n, the solution (5.2) is identical to 
the polynomial XI,“, and this means that the rows and columns in the matrix M, corresponding to the pairs (j, n), 
turn out to contain zeros (in this case, M is only a non-negative-definite matrix). We will denote the remaining 
2 x 2 cells with elements Mi $T: (i, q = 1,2) by Mg$ and derive recurrence formulae for them using the method 
proposed earlier in [19]. Actually, we represent the solution q” 2m+’ as a linear combination of power solutions 

hJ~24+‘(p,(p)=Xj~2~+‘(pI,(p,). k=O ,..., m (5.3) 

referred to the polar coordinates pr and cp/ E (-rc, rc) with centre at the tip of the cut &UT. We put 

S(h...* 2m+’ ) = 6 

By relations (2.2) and (3.4) (3.3), we have 

5(X . ..12k+l)= pk%E2, qy . ..1 2P+l),~p-P-KU-l (5.4) 

where E2 is an identity 2 x 2 matrix and CL is a matrix with elements (3.5). Using Taylor’s formula, we obtain the 
expansion 
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(2m-I)!! 1 1 j --_ + 

( 1 j=l [2(m-j)-I]!! i! 2p 

((UC - l)!! is the product of the odd numbers 1, 3, . . . , 2k - 1, where (-l)!! = 1). These relations enable one to 
determine the coefficients of the above-mentioned linear combinations and, moreover, together with equalities 
(5.4), lead to the recurrence formula 

h422p”,:’ +,z, 12;?l~;,,, 
. . 

f 
. ! ) 

-f ‘Mz’“-j)+t =201(m(;~~,~!(2m-l~!!(2p+l)!! f 2p+l 
0 

m+p+l 

In particular, taking m = p = 0, we find the well-known relation [15] 

We emphasize that, in the case of a linear increase in the cut, the non-zero cells of the matrix M differ from the 
2 x 2 matrix a only in numerical factors, which are independent of the form of the anisotropy. 

6. THE MODIFIED METHOD OF MATCHED 
ASYMPTOTIC EXPANSIONS 

As applied to problems of the brittle fracture mechanics, the method of matched asymptotic expansions 
[20,21,22, etc.] has been developed in detail [23, 141. The idea of a modification of this method which 
increases the accuracy of the asymptotic solution [25] was apparently put forward for the first time in 

P41. 
For fixed ZV, we take the sum 

v(r; x)= uO(x)+ c aj,,p(x) 
(j,n) 

(6.1) 

as the outer asymptotic expansion of the field uT(x) at a distance from the mouth of the crack E,, where 
ai, n are coefficients to be determined. 

Close to the mouth of the kink T,, we approximate U’(X) by a linear combination with unknown 
coefficients 

W(Z; X> = C bj,,rl""(2; X) (6.2) 
(idO 

Since the inner asymptotic expansion (6.2) is written in real coordinates, instead of asymptotic formula 
(5.2), the following is required 

qj*“(z;x)= Xj*"(/-,cp)+ C M,+)Y'.P(r,cp)+O(r-(N+')'2) 
(i.p) 

(6.3) 

The components M{;,” (z) of the matrix M(z) for the kink Tr appear here, where 

According to relations (2.12) and (4.3), the expansion 

v(z; x) = c c;,“Xj’yr, cp)+ c aj,“Yjqr, (p)+ 
(j,n) (j.n) 

+ c c uj,,mi’;Xiqr, q)+ o(rCN+‘)‘2), r + 0 
(j.4 (i,p) 

(6.5) 

holds. 
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On the other hand, by virtue of formulae (6.3) and (6.4), the relations 

w(z; x) = c bj,nxj*n(l., (p)+ 2 c &Q!&)Yi*p(r, ~)+0(7(N+‘)‘2r-‘N+‘)‘2) (6.6) 
(j.n) (j,n) (i,p) 

for the inner asymptotic expansion (6.2) when 2% + 00 are satisfied. 
Suppose co, a and b are columns composed of the coefficients co , *, Uj, ,, and bi ,, with the permissible 

pairs of indices. The matching of the outer and inner expansions (6.j) and (6.6) im$ies that the individual 
asymptotic terms are identical. The relations which arise in this case form a system of linear equations 
in the columns a and b 

co + ma = b, a = M(T)b (6.7) 

Denoting a 2N - 1 identity matrix by E, we find the solution of system (6.7) 

a=[E-M(t)m]-‘M(T)c’, b=[E-mAI(T’co (6.8) 

7. THE ASYMPTOTIC FORMULA FOR THE INCREMENT 
IN THE DEFORMATION POTENTIAL ENERGY 

Substituting its outer asymptotic expansion (6.1) instead of the vector u’, we have 

Evaluating the integrals using formula (4.2), we obtain 

The rigorous proof of the formula which has been obtained follows from the general results in [26] 
(also, see [22,27]). 

Taking the first relation of (6.8) into account, we obtain 

AU = -i(e’)‘[E- M(z)m]-‘M(z)c’ +O(T~‘~) (7.1) 

The superscript T means transposition. We emphasize that the matrix m is composed of the SIFs of 
the weighting functions and is defined by the geometry of the initial solid sLo. Following the well-known 
approach [19], integral representations can be derived for the coefficients rnj;:. 

When N = 1, formula (7.1) is simplified and becomes (compare with [15]) 

AU = -;(K;, K;) /I ‘$i?@ 
M;;‘(T) 

+ O(&) (7.2) 

The main 2 x 2 block M(r) = ]]M$ i(r) ]] of the matrix&f(z) which appears in (7.2) is appropriately 
called the elastic energy release matriu’when a small additional cut r appears in the initial solid Q,. 

If T, is a segment of length 1, = ~1, which extends the cut Eo, then the matrix M(z), according to 
relations (5.5), is replaced by 1,cx and formula (7.2) is an extension of the well-known Irwin formula 

P81 
AU = -+K”)TaKo +O&, K” = (K;, K;f (7.3) 

In this case, the energy release rate is equal to 

G= ,im w&;uO>-u(n,;u’) 1 
7+0 4 

= y[a,,(KF)* +2a,,KFK: +a22(Ki)2] (7.4) 

We recall (see relations (7.4) and (3.7)), that the quantity G is identical to the invariant Cherepanov- 
Rice integralJ(u’; y), evaluated using the solution of the initial problem (1.1) (1.2). 
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We determine the values of the constants oij by comparing formula (7.4) with the results in [29]. We 
write the relation between the components of the strain and stress tensors in the form [30] 

Eii = ail<311 + ai2o22 + ai6o]2$ i = 1, 2; 2E12 = a166] 1 +a26622 + aMo12 

Then, according to the calculations in [29], we obtain 

alI =-a”Im(p, +l.t2)c1,&, 
2 (312 = -41’1mp,p2, 

2 a22 = ~Inl(u, +l.lz) 

Here Im nj > 0, and u1 and p2 are the roots of the characteristic equation [30] 

%P4 - 2‘+6n3 + @a12 + a6,)n2 - 2a26u + a22 = 0 

8. THE ASYMPTOTIC STRESS INTENSITY FACTORS AT 
THE TIP OF A CRACK WITH A LINEAR KINK 

Suppose Y, is an interval of length 1, = 01 starting from the tip of the crack E at an angle p E (-rc, n). 
At the kink vertex we introduce the polar coordinates i and $I E (--71, n), directing the polar axis along 
Tr. The expansion 

UT(X) = c;ex - IV0 + C;,oi2*0 + K,rX’*‘(i, $ + K;?*‘(i, $)+ O(i) (8.1) 

holds for the displacement vector u’(x) when i + 0. We emphasize that, in the case of an arbitrary 
anisotropy when l3 f 0, the expressions for the vectors XL ‘(i, tj) differ from X” ‘(i, 6). 

The asymptotic forms of the SIFs K] and KI at the tip of the crack which has grown are determined 
using the inner asymptotic expansion (6.2). We present the formulae for the special solutions, similar 
to (8.1) 

T+“(r;x)= KI.“(~)~‘.‘(i,~)+K;i”“(.r)~2.‘(i,~)+O(j) (8.2) 

K/*“(r) = r(n-‘)‘2Kij~n, i = I,2 (8.3) 

Hence, by relations (6.2) and (8.2), (8.3) we find the asymptotic expansions for the SIFs K] and K$ 
from expansion (8.1) 

K+ C bj,,Kij*“(r) = C +‘-1)‘2bj,.JKij~n (8.4) 
(j,n) (j.n) 

Here 9, ,, are the elements of a column given by the second formula of (6.8), and K(.’ and K$ a are 
coefficients (corresponding to the value z = 1) which are independent of the parameter z. 

When N = 3, formula (8.4) with an accuracy 0(rq2), appears as 

K,?= i K;K,i*’ + r~T,Kf.2 + 
j=l 

(8.5) 

Here, KY = cy, 1, To = cy, 2 and kq = cy, 3 are the SIF, the tension intensity along the crack and the 
lower SIFs, and rnj:i and rn$:; are the SIFs of the weighting function CL”. The basis of the asymptotic 
representations of the SIFs is obtained, as usual, using methods developed previously [22,27,31]. 

Methods proposed earlier [15] enable one to relate the quantities M{; ; and the SIFs of the special 
solution $’ “(5) and q *, ‘( 5) 

(8.6) 
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Here kiwi,, Bj, are coefficients in the formula, similar to (3.4) for the differentiation of the vector 
%‘I * (F, cp) along the kind T. 

Now, using relation (8.6) the asymptotic formula (7.2) for the energy increment can be rewritten in 
the form [15] 

AU= -&K’,T~K’ + o(G) (8.7) 

Here 1, = zl is the length of the kink Tr, K’ = (KI, Kz)T is the SIF column vector at the tip of Ts and 
& is a matrix which appears in formula (8.6). 

In the case of an isotropic body al2 = 0 and all = a22 = a0 = (4~))‘(1 + x), where x = (h + 3~) 
(h + cl)-‘, and h and u are Lame constants. Here, relation (7.3) is identical to the classical Irwin formula 

PI 

AU= -+,, I K” l* +O(&) (8.8) 

In this case, relation (8.6) is simplified 

(8.9) 

Setting up the 2 x 2 matrix F = 11 Fij 11 from the coefficients Ki k ’ = Fij, we rewrite formula (8.9) when 
n = k = 1 in the matrix form 

M = aolFTF (8.10) 

Substituting the quantities M{!, i, calculated from (8.10), into (8.5), we obtain the result in [ll] for 
the case of a straight kink T,. Expansions in powers of the parameter m = p/n have been obtained for 
the quantities K/ ’ and Z-“V$ 2 in [12]. Using the results in [12] and relation (8.9), the coefficients 
Mi: i are easily calculated. 

9. DISCUSSION OF THE RESULTS AND REMARKS 

1. In the case of an anisotropic solid, the surface energy density which appears in the fracture energy 
criterion depends on the direction of the development of the crack (see [32], etc.). Suppose a crack E. 
is situated in the most dangerous direction, that is, min y = y(0). We will now find the necessary conditions 
for the rectilinearity of its development. The increment in the total energy, caused by the nucleation 
of the kink Y,(p) in the form of a segment of length I, = 21 directed at an angle p to Eo, is, by virtue 
of (7.2), equal to 

(K”>TM(r; P>K” = z 2y(p)l -;(K’)rM(l; p>K” 1 (9.1) 

Here, M(z; 0) is the energy release matrix for the kink Y,(p). 
According to Griffith’s criterion [33], a crack grows rectilinearly subject to the condition that the angle 

p = 0 corresponds to the global minimum of the quantity (9.1). S ince, according to the assumption, 
day(O) = 0, the quantity (9.1) has a local minimum in the direction fi = 0 when the two relations 

(K”)r+,M(l; O)K” = 0 (9.2) 

4Q(O)l --!(K~)‘$M(I; o)K” > 0 (9.3) 

are satisfied. The first of them requires that the matrix dgM(1; 0) should not be of fixed sign and leads 
to a relation between the SIF column with the characteristic numbers pi and the columns mi of this 
matrix 

K” =const(lu2 1% m,-+lu, 1% m2) (9.4) 
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Since diy(O) 2 0, inequality (9.3) is guaranteed, for example, in the case of a negative-definite matrix 
$M(l; 0). We emphasize that the above-mentioned necessary conditions have to do with the first and 
second derivatives of the matrix M(1; 0), rather than with the matrix itself. 

Using the calculations in [12], for an isotropic solid we have 

+l(I:O)=~diag{-I, (3--l-$)} 

M, =(I, I)r, u, = 1, m,(--1, I)‘. l.Q =-1 

Consequently, by virtue of expression (9.4) equality (9.2) is possible in two situations: a pure first mode 
KY = C, @ = 0 and a pure second mode KY = 0, Ki = C. The second diagonal element of the matrix 
diM(1; 0) is positive, and this means the impossibility of a rectilinear development of a crack under 
shear loading. 

2. According to what has been said in Section 2, it makes sense to furnish the deformation and force 

criteria with different bases X$$ and Xjis; of the power solutions. Suppose the transition from the pair 

Xi& X?$ to the pair Xb;, X $; is made using the 2 x 2 matrix T = 11 Tij 11. Comparing normalizations 

(2.2) and (2.13), we see that the same matrix is suitable for the pairs Xt;1,2”“, X$J~” and X$j2m+i, 

X(J) 2P 2m+1 with an arbitrary natural number m. By virtue of conditions (2.7) for the singular solutions 
yl,2m+l 

3 y... 2g h+l, it is necessary to use the inverse matrix T-‘. Finally, on account of conditions (2.13) 

the condition for the opening of the cut ’ E. m terms of the SIFs (a force basis) is written as 

3. The basis X1($ of power solutions adap ted to the energy criteria for fracture was introduced in [15]. 
The matrix which accomplishes the transition from the pair Xt$,‘, X?${ to the pair Xi&, X2jei is equal 
to &+ , where a0 and OL are defined in Section 3 (see formulae (3.4) and (3.5)). We set up the column 
K& from the coefficients cy, 1 and ci, 1 in an asymptotic expansion, similar to (2.12), with respect to the 
energy basis of the solution of the unperturbed problem II’. The column Kyej is related to the SIF column 
K” as follows [15]: 

KY ) = a&%K” 
e 

Hence, on expressing the vector K” in terms of K$.) and substituting into expression (7.3), we find 

1 
AU = -21,ao 1 K& l2 +O(z K ) (9.5) 

As a result, formula (9.5) for the energy increment for an anisotropic material in the case of the rectilinear 
propagation of a crack does not differ in form from the classical Irwin formula (8.9). 

In the case of a segment Y, of length I, making an angle l3 with the direction of the crack Eo, formula 
(7.2) becomes 

Here, Q(p) = (l,ao)-‘a-“*M(r; @cll-‘” is a symmetric matrix with dimensionless coefficients, which is 
normalized by the condition &i(O) = E-2. The properties which have been enumerated make the 
normalized elastic energy release matrix M(P) a canonical characteristic of the kinking of a semi-infinite 
crack. 

4. The enlarged elastic energy release matrixM(z) is defined by the shape and size of the kink Ts. Integral 
representations can be obtained [ 141 for the coefficients M{: ;. We emphasize that the values of the 
coefficients iVti depend on the basis of the power solutions used. Actually, the transition from a force 
basis to a deformation or energy basis must be accompanied by a recalculation of the components of 
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the matrixM. Earlier [34,35,36, etc.], integral characteristics, similar to the matrixM, were introduced 
for other problems in mechanics and other geometrical situations. 

The proposed asymptotic procedure is also applicable in th case of a family of edge and internal cracks 
(compare with the investigation in [37] of the tensile crack). Note that the interaction of cracks is 
described using an analogue of matrix (4.4), which is made up of the SIFs of the weighting functions 
at all the tips and therefore has dimensions which increase in proportion to the number of tips. Such 
a matrix preserves its symmetry but, generally speaking, loses its positive definiteness (see [19]). 
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States of the Former Soviet Union (INTAS-96-0876). 
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